首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1486篇
  免费   526篇
  国内免费   483篇
测绘学   43篇
大气科学   382篇
地球物理   276篇
地质学   1069篇
海洋学   260篇
天文学   26篇
综合类   84篇
自然地理   355篇
  2024年   7篇
  2023年   19篇
  2022年   45篇
  2021年   84篇
  2020年   82篇
  2019年   89篇
  2018年   85篇
  2017年   66篇
  2016年   85篇
  2015年   77篇
  2014年   104篇
  2013年   131篇
  2012年   112篇
  2011年   90篇
  2010年   71篇
  2009年   107篇
  2008年   111篇
  2007年   103篇
  2006年   102篇
  2005年   105篇
  2004年   92篇
  2003年   92篇
  2002年   84篇
  2001年   71篇
  2000年   64篇
  1999年   59篇
  1998年   63篇
  1997年   43篇
  1996年   41篇
  1995年   37篇
  1994年   34篇
  1993年   36篇
  1992年   31篇
  1991年   15篇
  1990年   19篇
  1989年   13篇
  1988年   8篇
  1987年   5篇
  1986年   10篇
  1983年   1篇
  1980年   1篇
  1954年   1篇
排序方式: 共有2495条查询结果,搜索用时 18 毫秒
111.
On the basis of the previous regional geological survey, based on the macroscopic and microscopic structural survey, combined with the comprehensive analysis of the regional magmatic activity and dating data, the authors in this paper revealed that there is another metamorphic core complex structure in Lizifang area of Southern Liaoning, namely Lizifang metamorphic core complex. A typical three-layer structure and five parts exist in the core complex, which are the footwall composed of Neo-archean metamorphic plutonic rocks and mesozoic granite intrusive rocks, the detachment fault zone composed of different levels of tectonic rocks, and the upper plate composed of Precambrian sedimentary cap and Cretaceous extensional basin. Lizifang metamorphic core complex formed in the Early Cretaceous Epoch, and the upper plate moved from NWW to SEE relaive to the footwall, which was similar with Jinzhou metamorphic core complex and Wanfu metamorphic core complex in geometry, kinematics polarity and formation time, indicating the same dynamic background. The determination of the metamorphic core complex may provide a basis for the late Mesozoic lithospheric thinning process and the mechanical and rheological properties of the lithosphere in the east of North China Craton. At the same time, the metamorphic core complex is closely related to the mineralization of gold deposits. So the detachment fault zone of Lizifang metamorphic core complex can serve as the key work area for further gold exploration, which may possess large mineralization potential.  相似文献   
112.
任丽  关铭  李有缘  王深义 《气象科技》2019,47(6):959-968
本文使用常规观测资料、卫星云图、自动气象站降水量以及0.25°×0.25°的NCEP/NCAR再分析资料,对出现在东北地区北部受不同系统影响的连续2d暴雨过程的热力和动力场结构特征展开研究。结果表明:24日为暖锋锋生暴雨,暴雨范围大;25日为台风暴雨,暴雨出现在台风移动路径上,为狭长带状。暴雨是由MCS活动造成的,每次短时强降水均与TBB低值中心相对应,台风倒槽内的MCS强度比暖锋云系内的MCS弱,但是降水强度却更大。台风安比携带大量暖湿空气,其东侧的低空急流向北输送热量和水汽,水汽辐合集中在边界层内,台风暴雨的水汽辐合强度比暖锋暴雨更强烈,所造成的雨强更大。暖锋暴雨期间,小兴安岭迎风坡地形的辐合抬升作用明显;高层强辐散及地形辐合抬升作用对暴雨有较大贡献。台风暴雨期间,低空辐合,特别是水汽辐合作用对暴雨有较大贡献;辐合区位于台风倒槽附近,倒槽表现为冷锋性质。  相似文献   
113.
利用1961—2016年山西盛夏(7—8月)平均降水和同期NOAA重构海温资料,分析了山西盛夏降水分别与赤道中东太平洋海温和西太平洋暖池海温相关性的变化。结果表明:山西盛夏降水和赤道中东太平洋海温之间呈现稳定的显著负相关;和西太平洋暖池海温呈现正相关,并在20世纪70年代末到80年代初之后相关性加强,通过了0.05显著性检验。进一步分析表明,这种西太平洋暖池海温对20世纪80年代以来山西盛夏降水指示意义加强的事实,主要体现在赤道中东太平洋海温偏冷的背景下。西太平洋暖池海温异常通过影响与山西盛夏降水密切相关的大气环流、季风槽位置和东亚夏季风,导致山西盛夏降水异常。盛夏赤道中东太平洋海温偏冷时,西太平洋暖池海温偏暖(冷),通过遥相关引起中高纬度大气欧亚—太平洋型遥相关(EUP)和负太平洋—日本(PJ)波列,通过影响季风槽位置偏西偏北(偏东偏南),引起西太平洋副热带高压偏北(南)和季风指数偏小(大),导致山西盛夏降水偏多(少)。  相似文献   
114.
本文利用直减率反演云底高度的计算方法,联合星载主、被动探测资料开展了中国东海、南海上空暖云云底高度反演研究,同时对暖云的分布特征进行了统计。结果表明受大气层结稳定程度影响,夜间的反演效果优于白天。两种资料的云顶高度较一致时,反演效果好,该方法具有可行性。  相似文献   
115.
本文利用MICAPS4.1平台上的高空、地面、智能网格预报、集合预报等数值预报产品,对2018年10月26-28日发生在黑龙江省大兴安岭地区的一次区域性暴雪天气过程形成机制进行探讨。结果表明:高空槽后强冷空气与槽前西南暖湿气流在大兴安岭上空交汇,导致暖锋锋生,地面暖锋与低空暖式切变相互作用形成暴雪天气。暴雪的主要触发系统就是超极地冷空气促使高空槽强烈发展切涡,≥20m·s^-1的西南低空急流作为水汽输送带,为暴雪区提供了充足的水汽来源;垂直上升运动中心和散度辐合辐散中心耦合且加强,为暴雪提供了强有力的动力抬升条件,有利于上升运动的增强发展。智能网格预报产品对这次大兴安岭暴雪天气的落区、降水量级以及强降雪的时段,都预报的比较准确。  相似文献   
116.
我国中东部平原地区临界气温条件下降水相态判别分析   总被引:1,自引:0,他引:1  
陈双  谌芸  何立富  郭云谦 《气象》2019,45(8):1037-1051
基于2001—2013年地面观测和探空资料,对地面气温位于0~2℃(以下称临界气温)我国降雪的时空分布及其与降雨的垂直热力特征进行了研究,引入了决策树判别方法对上述条件下雪和雨进行了判别分析,结果表明:临界气温下降雪出现频率总体高于降雨、雨夹雪出现频率,且在我国华北南部至江南北部的中东部地区分布较多,年均可达7.69~15.38站次;临界气温下,降水相态为雨或雪对应的平均温度廓线最大差异位于650 hPa附近,且地面气温较低时,平均温度差异更明显,平均湿度廓线差异则主要位于低层,且在地面气温较高时,平均湿度差异更明显;临界气温下,降水相态为雨时,地面上空存在暖层样本占比,较降水相态为雪时更高,且降雨时暖层主要位于中层,降雪时暖层则主要位于低层,降雨时其暖层强度显著大于降雪时暖层强度;在临界气温下雨雪判别分析中,地面气温能显著提升判别准确率,湿球温度能在一定程度上提升判别准确率,基于云顶温度、中层融化参数、低层湿球温度构建的决策树判别模型,判别准确率达到91.86%,能较好地解决临界气温下雨和雪的判别问题。  相似文献   
117.
2010—2016年江西省暖季短时强降水特征分析   总被引:2,自引:0,他引:2  
付超  谌芸  朱克云  单九生  曾智琳 《气象》2019,45(9):1238-1247
利用江西省2010—2016年5—9月1597个观测站逐小时降水资料对江西省短时强降水进行统计分析。采用REOF将降水场划分为5个区域:赣北南部(Ⅰ区),抚州市及赣州中部(Ⅱ区),赣北北部(Ⅲ区),赣南南部、北部(Ⅳ区)以及赣中西部(Ⅴ区)。短时强降水高频区主要分布在山地及河谷附近,分别为湘赣交界罗霄山脉东侧、武夷山西侧、信江河谷、乐安河谷和昌江河谷。河谷附近短时强降水频次以昌江河谷最高(16.9次/a),山地附近最高在罗霄山脉东侧(12.6次/a),极端短时强降水分别位于上饶市东北部山区(3.7次/a)及九岭山南侧的锦江河谷(3.3次/a)。短时强降水主要发生在5月第3候,6、7月第3~4候以及8月第2~3候。Ⅳ、Ⅴ区具有单峰型的日变化特征;Ⅰ、Ⅱ、Ⅲ区具有双峰型的日变化特征。主峰基本集中在下午17时;次峰在上午08—10时。短时强降水对暴雨贡献率基本在40%以上,Ⅰ、Ⅱ区的暴雨天气过程将近一半是由短时强降水贡献的。信江河谷是暴雨雨量中心,但并不是短时强降水雨量中心;昌江河谷与武夷山西麓既是暴雨中心也是短时强降水中心。  相似文献   
118.
利用以色列特拉维夫大学二维面对称分档云模式(two-dimensional slab-symmetric detailed spectral bin microphysical model of Tel Aviv University),对2016年9月4日16:00(北京时)前后我国华东地区的一次暖性浅对流云降水过程进行模拟,模式模拟的强回波中心高度和最大回波强度范围与观测基本一致。并在此基础上进行了小于1 μm的吸湿性核的播撒减雨试验,分别考虑了不同播撒时间、不同播撒高度以及不同播撒剂量的敏感性测试。结果表明:在云的发展阶段早期播撒能起到更好的减雨效果,播撒时间越早对大粒子生长过程的抑制作用越强,随着播撒时间向后推移,受抑制作用最显著的粒径段向小粒径端偏移;在云中心过饱和度大的区域下方进行播撒,减雨效果更加明显,当播撒剂量为350 cm-3时,地面累积降水量减少率可达23.3%;另外,随着播撒剂量的增加,减雨效果更加显著,甚至能达到消雨的效果。因此,在暖性浅对流云中合理地播撒小于1 μm的吸湿性核能达到较好的减雨或消雨效果。  相似文献   
119.
利用天气观测资料和NCEP再分析资料对2004-2013年5-9月影响山东的切变线天气特征和环流形势进行了分析。将影响山东的切变线按热力性质分为冷切变线和暖切变线,10a间影响山东的切变线共发生59次,其中暖切变线出现43次,占切变线总发生次数73%;冷切变线出现16次,占切变线总发生次数27%。切变线发生频数7月最多,6月次之,分别占切变线总数的35.6%和23.7%,9月最少,约占0.05%。影响山东典型切变线的发生与副高关系密切,冷切变线多出现在西风槽东移受阻,在对流层低层逐渐形成,暖切变线则出现在西风带小高压与副高合并,副高北抬时形成。针对2次典型冷暖切变线暴雨天气过程对比分析其暴雨落区、雷达回波特征和动力机制等,结果发现:暖切变线降水的强度、暴雨范围和持续时间明显大于冷切变线降水。暖切变线暴雨的GPS可降水量在强降雨出现前8h快速上升,可降水量峰值对应地面降雨大值,对地面降雨变化反映不敏感,物理量呈垂直分布,强回波单体基本位于暖切变线雨带的中间。冷切变线暴雨的GPS可降水量短时间内增幅大,地面强降雨在峰值出现1h后发生,对地面降雨变化反映较敏感,物理量从低层到高层向北倾斜且上升运动区较深厚,回波单体位于切变线南侧。  相似文献   
120.
利用FNL及常规资料,对比分析了2010年2月22—24日(过程Ⅰ)和2015年12月10—13日(过程Ⅱ)天山北坡2次暴雪过程。结果表明,暴雪区上空θse锋区陡立和条件性对称不稳定及次级环流是形成暴雪的主要机制。不同点是:过程Ⅰ暴雪产生在西西伯利亚低涡底部强锋区上,南北支短波槽汇合的区域,冷高压为西北路径;过程Ⅱ是乌拉尔山大槽东移北收,冷高压为偏西路径;2次过程在温压的时间演变上有显著的区别。在高低空配置上也有明显的区别:过程Ⅰ 500 hPa以下为暖平流,以上为冷平流,低层为暖湿结构;过程Ⅱ 700 hPa以下为冷平流,700—600 hPa为暖平流,低层有湿冷空气锲入。过程Ⅰ暴雪区位于θse锋区上,锋区低层强,中高层弱;过程Ⅱ暴雪区位于θse锋区中后部,锋区低层弱,中高层强。水汽输送和输入量及比湿过程Ⅰ大于过程Ⅱ。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号